Corrigendum: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
نویسندگان
چکیده
The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this 'artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics.
منابع مشابه
Valley-selective circular dichroism of monolayer molybdenum disulphide
A two-dimensional honeycomb lattice harbours a pair of inequivalent valleys in the k-space electronic structure, in the vicinities of the vertices of a hexagonal Brillouin zone, K(±). It is particularly appealing to exploit this emergent degree of freedom of charge carriers, in what is termed 'valleytronics'. The physics of valleys mimics that of spin, and will make possible devices, analogous ...
متن کاملDichroic spin–valley photocurrent in monolayer molybdenum disulphide
The aim of valleytronics is to exploit confinement of charge carriers in local valleys of the energy bands of semiconductors as an additional degree of freedom in optoelectronic devices. Thanks to strong direct excitonic transitions in spin-coupled K valleys, monolayer molybdenum disulphide is a rapidly emerging valleytronic material, with high valley polarization in photoluminescence. Here we ...
متن کاملThe Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2
Theoretical calculation and experimental measurement have shown that twin grain boundary (GB) of molybdenum disulphide (MoS2) exhibits extraordinary effects on transport properties. Precise transport measurements need to verify the transport mechanism of twin GB in MoS2. Here, monolayer molybdenum disulphide with a twin grain boundary was grown in our developed low-pressure chemical vapor depos...
متن کاملElectrical contacts to two-dimensional semiconductors.
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical cont...
متن کاملSynthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process
In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...
متن کامل